
Generalization Analysis of Asynchronous SGD Variants

Caspar Amery * 1 Marco Lourenço * 1 Federico Villa * 1

Abstract

Asynchronous Stochastic Gradient Descent
(ASGD) improves training efficiency by enabling
parallel workers to update model parameters asyn-
chronously, which introduces staleness in the up-
dates. While convergence of ASGD variants is
well established, their impact on generalization is
less explored. Our study shows that these ASGD
methods achieve comparable convergence and
equal or better generalization than standard SGD
despite staleness, with DASGD notably reducing
l2 norm.

1. Introduction
Stochastic Gradient Descent (SGD) is a fundamental opti-
mization technique widely employed in machine learning
(ML), typically implemented by sequentially processing
mini-batches of data and updating the model parameters.
In this standard implementation, a single worker performs
computations sequentially, which can become inefficient,
especially when dealing with large datasets or models.

To address these efficiency limitations, Asynchronous
Stochastic Gradient Descent (ASGD) employs multiple par-
allel workers that independently compute gradients on sepa-
rate mini-batches. Unlike synchronous approaches, ASGD
applies these gradients to the model parameters immediately
upon completion without waiting for other workers to finish.
This asynchronous approach introduces ”staleness,” mean-
ing updates may be based on outdated model parameters
due to concurrent modifications by other workers. Although
staleness increases stochasticity, it can enhance computa-
tional throughput and scalability by effectively leveraging
parallel resources.

While previous literature establishes convergence guaran-
tees of various ASGD algorithms, the impact of staleness on
model generalization has received limited attention. Given

1École Polytechnique Fédérale de Lausanne. Correspon-
dence to: Caspar Amery <caspar.amery@epfl.ch>, Marco
Lourenço <marco.lourencoleitao@epfl.ch>, Federico Villa <fed-
erico.villa@epfl.ch>.

Optimization for machine learning, CS-439, EPFL

this research gap, our project aims explicitly at evaluating
the generalization capabilities of several ASGD algorithms,
including ASAP.SGD (Bäckström et al., 2022), SA-ASGD
(Zhang et al., 2016) and DASGD (Tan et al., 2024). The the-
oretical convergence of the examined algorithms is already
established in their respective foundational works, allowing
us to concentrate exclusively on generalization aspects.

2. Model and Dataset
2.1. Dataset

We use synthetic linear regression datasets with three levels
of over-parameterization (10%, 50%, 100% of the sample
size). Each dataset contains 100 samples with targets gen-
erated by a weight vector sampled uniformly from [−5, 5].
We split 80%/20% into training/test sets and run 200 inde-
pendent seeds per configuration. Across all experiments the
same batch size (10% of training data) is used.
Learning rate: η0 = 0.95 · 2

σ2
max(X) , where σmax is the

largest singular value of the design matrix X , ensuring sta-
ble convergence in our linear over-parametrized problem.
Workers: All ASGD variants use 10 parallel workers in our
experiments. Increasing this number empirically changed
only the mean of the staleness distribution. Thus this should
not affect the behavior of our used ASGD algorithms and
so we fixed it for all experiments.

2.2. Staleness Distribution Considerations

We hypothesize that the shape of the staleness distribution
affects ASGD performance in our tested algorithms and that
its impact may vary across algorithm variants. While some
theoretical analyses assume simplified models (e.g., uniform
or Poisson) for analytical tractability, empirical studies show
that staleness distributions are highly context-dependent and
influenced by the specific AsyncSGD algorithm, number
of workers, and system-level factors such as hardware het-
erogeneity and consistency mechanisms. Observed distri-
butions can exhibit diverse forms including multi-modal
or normal like patterns depending on worker update rates
and system conditions. Although the expected staleness in-
creases roughly linearly with the number of workers, there
is no single canonical parametric form such as exponential
that consistently fits real scenarios.

1



Generalization Analysis of Asynchronous SGD Variants

To maintain transparency, we report our observed staleness
histograms per experiment in the appendix.

2.3. Evaluation Metrics

We use several complementary metrics to quantify the gen-
eralization and structural properties of the learned models:

Metric Formula Intuition and Relevance

Test loss 1
n

∑n
i=1(yi−ŷi)

2 Standard prediction error on
unseen test data.

L2 norm ∥θ∥2 =
√∑

i θ
2
i Measures model complexity;

lower values typically corre-
late with better generalization.

Sparsity
ratio

#(θi≈0)
d

Indicates how many features
are effectively ignored; pro-
motes simpler models.

Kurtosis 1
3n

∑
i

(
θi−µ

σ

)4

Detects heavy tails and outlier
dominance; large kurtosis may
signal overfitting.

Additional computations: Paired t-tests for statistical sig-
nificance. These tools provide a comprehensive view into
generalization beyond test loss alone. For each run training
stops after reaching approximate 0 training loss.

3. Experiments
3.1. ASAP SGD

ASAP.SGD (Bäckström et al., 2022) uses an adaptive learn-
ing rate based on the staleness distribution of updates to
mitigate the adverse effects of stale gradients while preserv-
ing convergence guarantees. The method uses a staleness-
adaptive step size η(τ : η0), where τ is the staleness of an
update and η0 is the base learning rate. The function must
satisfy two key properties:

• Mean-preserving: E[η(τ : η0)] = η0
• Priority-preserving: η(τ + 1 : η0) ≤ η(τ : η0)

TAIL-τ step size. A step size function satisfying these
properties is the TAIL-τ function:

η(τ : η0) = CA(τ) η0, CA(τ) = 1 +A (1− 2Fτ̃ (τ)) ,

where Fτ̃ (τ) = Pr[τ̃ ≤ τ ] is the empirical cumulative dis-
tribution function (CDF) of the observed staleness, and A is
the amplitude parameter specifying the maximum deviation
of η from the base step size η0.

Theoretical properties. Using this TAIL-τ function addi-
tionally guarantees:

• Range bounds: maxτ η(τ) = (1 +A)η0
minτ η(τ) = (1−A)η0

• Variance: Var[η(τ)] = (Aη0)
2

3

Execution model assumptions. ASAP.SGD assumes:
E[τt] = τ̄ ∀t, and E[τt|τt′ ] = E[τt] ∀t < t′

Convergence conditions. ASAP.SGD establishes conver-
gence under the following assumptions: Lipschitz gradi-
ents (see Equation (1)) and Bounded gradient moment
(see Equation (2)).

Practical usage. The ASAP.SGD paper (Bäckström et al.,
2022) demonstrates that the TAIL-τ step size improves con-
vergence speed in wall-clock time across diverse models
and datasets. However, it does not evaluate the effect on
generalization, a gap we aim to address in this work. Our ex-
perimental setup satisfies all theoretical conditions for con-
vergence, including non-anticipative staleness and bounded
gradient assumptions. We follow the original paper in fixing
A = 1. To ensure stability, we scale the base learning rate
η0 by 0.5, so the maximum adaptive learning rate (1+A)η0
matches the original baseline η0 that guarantees stable con-
vergence and is used in our regular SGD implementation.

3.2. Dynamic Async-SGD

DASGD (Tan et al., 2024) employs an adaptive learning
rate based on update staleness, mitigating the impact of
outdated gradients while ensuring convergence. It updates
model parameters using the staleness τ and the number of
workers K, defined as follows:

Definition. The update rule is defined as:{
∆Wt+1 =

τ

τ +K
∆Wt +

K
τ +K

(−η0∇L(Wt−τ ))

Wt+1 = Wt +∆Wt+1

Where Wt is the model’s weight at time step t and
∇L(Wt−τ ) is the gradient computed by a worker with stal-
eness τ .

Interpretation. In this rule, the gradient update is a
weighted average of two components:

• The previous update ∆Wt, weighted by the normalized
staleness τ

τ+K ,
• The new gradient, weighted by the normalized number

of workers K
τ+K .

This weighting scheme balances the influence of past up-
dates and incoming gradients. Since the weights lie ∈ [0, 1]
and sum to 1, the update remains stable even with delayed
gradients. Higher staleness increases reliance on past up-
dates, while lower staleness gives more weight to the fresher,
and typically more relevant, gradient information.

2



Generalization Analysis of Asynchronous SGD Variants

Convergence conditions. The authors showed DASGD
convergence under two mild assumptions, which are satis-
fied in our setting: Lipschitz gradients (see Equation (1))
and µ-strong convexity (see Equation (3)).

3.3. Staleness-Aware Async-SGD

SA-ASGD (Zhang et al., 2016) uses a staleness-adaptive
learning rate and a gradient accumulator to mitigate the im-
pacts of delayed gradient updates in asynchronous training.

The algorithm scales gradients inversely to the workers’ stal-
eness τ and accumulates received updates until a threshold c
is reached, upon which the received c updates are all applied
at the same time to the global model the parameter server
stores. This algorithm reduces the effect the staleness has
on the overall updates.

Staleness-Adaptive Learning Rate: the staleness is defined
as τ = t− w for a worker computing a model updated on a
local version w and the current server having a global model
at version t. Gradients are scaled by a variable learning rate
η(τ) defined as follows:

η(τ) =

{
α0/τ if τ > 0,

α0 otherwise.

Where α0 is the base learning rate. The algorithm uses
staleness to penalize updates by making them less effective.

Gradient Accumulator: Scaled gradients are saved into
a buffer G = {η(τm) · gm, ..., } and applied to the param-
eter server’s global model only after they exceed a certain
threshold c = max(1, ⌊num workers/max staleness⌋.

Update Rule: The algorithm first computes the accumulated
scaled gradient effect θt+1 = θt − gi, and then updates the
global model as gi = 1

c

∑c
l=1 η(τi,l) · gl.

Convergence Conditions: in (Zhang et al., 2016) it is
demonstrated that under the Lipschitz gradients (see Equa-
tion (1)) and Bounded Staleness (see Equation (4)) con-
ditions and the learning rate constraints (see Equations (5)
and (6)), SA-ASGD converges.

4. Results
We moved all tables, raw numerical results and plots to
the Appendix to keep the main text concise and focused
on the interpretation of results. The experimental results
indicate that ASAP.SGD and DASGD generalizes similarly
to traditional sequential SGD across various levels of over
parameterization. Minimal and inconsistent statistical differ-
ences across metrics suggest robustness to staleness-induced
stochasticity. Minor significant effects, such as kurtosis in
the lowest over parameterization scenario, might reflect sub-

tle differences in weight distributions due to asynchronous
updates.

These outcomes highlight that ASGD can exploit parallel
computing effectively without significantly sacrificing gen-
eralization performance, supporting its practical application
in large-scale machine learning tasks.

We observe a highly significant difference between DASGD
and SGD on the l2 norm, with a moderate effect size (Co-
hen’s d = 0.478), which remains significant after Bonfer-
roni correction for multiple comparisons. However, unlike
the original paper, we did not observe any performance dif-
ferences in our setup when varying the number of workers.

5. Conclusion
Our project’s primary aim was to investigate the generaliza-
tion performance of three variants of ASGD. Our findings
are particularly encouraging because they indicate that these
ASGD variants, which were designed to converge faster
through parallelization (as shown in their respective papers),
do not suffer or decrease in generalization performance
compared to regular SGD despite the staleness. This means
that not only can these ASGD variants accelerate training
with multiple workers, but they can also achieve the same
generalization performance as regular SGD, making them
practical and effective options for large-scale machine learn-
ing tasks. Note that, DASGD reduced l2 norm suggesting
that this model may provide better generalization than stan-
dard SGD not only in our simple linear setting but maybe
also in other contexts.

Further research should investigate a broader range of ML
models (such as deep neural networks and convolutional
architectures) and real-world datasets to assess whether our
findings generalize beyond simple linear (over parametrized)
regression tasks. Additional work could also examine how
ASGD staleness interacts with complex data distributions,
task complexity, and advanced regularization techniques.
Moreover, exploring the impact of different staleness distri-
butions, worker heterogeneity, and implementation details
would provide a more complete understanding of general-
ization under realistic training conditions.

3



Generalization Analysis of Asynchronous SGD Variants

References
Bäckström, K., Papatriantafilou, M., and Tsigas, P.

ASAP.SGD: Instance-based adaptiveness to staleness in
asynchronous SGD. In Chaudhuri, K., Jegelka, S., Song,
L., Szepesvari, C., Niu, G., and Sabato, S. (eds.), Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 1261–1276. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/
v162/backstrom22a.html.

Tan, T., Xie, H., Xia, Y., Shi, X., and Shang, M. Asyn-
chronous sgd with stale gradient dynamic adjustment
for deep learning training. Inf. Sci., 681(C), Oc-
tober 2024. ISSN 0020-0255. doi: 10.1016/j.ins.
2024.121220. URL https://doi.org/10.1016/
j.ins.2024.121220.

Zhang, W., Gupta, S., Lian, X., and Liu, J. Staleness-
aware async-sgd for distributed deep learning, 2016. URL
https://arxiv.org/abs/1511.05950.

4

https://proceedings.mlr.press/v162/backstrom22a.html
https://proceedings.mlr.press/v162/backstrom22a.html
https://doi.org/10.1016/j.ins.2024.121220
https://doi.org/10.1016/j.ins.2024.121220
https://arxiv.org/abs/1511.05950


Generalization Analysis of Asynchronous SGD Variants

A. Complete Experimental Results ASAP vs SGD

Overparam. Avg. ASAP Loss Loss Mean Diff. Loss diff t-test p L2 Diff L2 p Sparsity Diff Sparsity p Kurtosis Diff Kurtosis p

10% 92.26 0.24 0.450 0.0000 0.802 -0.0003 0.889 -0.0040 0.030
50% 204.32 -0.73 0.156 0.0002 0.013 0.0029 0.273 0.0011 0.733

100% 348.25 0.05 0.938 0.0000 0.802 0.0008 0.663 0.0058 0.030

Table 1. Summary of ASGD vs. SGD experiments across different over parameterization levels for 200 different seeds/runs. Metrics
reported as SGD minus ASGD.

(a) 10% overparam. (b) 50% overparam. (c) 100% overparam.

Figure 1. Comparison of test-difference distributions

(a) 10% overparam. (b) 50% overparam. (c) 100% overparam.

Figure 2. Example staleness distribution for each case of over parametrization

5



Generalization Analysis of Asynchronous SGD Variants

Figure 3. Box plots of per-run weight statistics for SGD vs. ASGD under 10% over-parametrization. Hollow circles denote individual
runs falling beyond 1.5 × IQR from the 25th or 75th percentile (statistical outliers).

Figure 4. Box plots of per-run weight statistics for SGD vs. ASGD under 50% over-parametrization. Hollow circles denote individual
runs falling beyond 1.5 × IQR from the 25th or 75th percentile (statistical outliers).

Figure 5. Box plots of per-run weight statistics for SGD vs. ASGD under 100% over-parametrization. Hollow circles denote individual
runs falling beyond 1.5 × IQR from the 25th or 75th percentile (statistical outliers).

6



Generalization Analysis of Asynchronous SGD Variants

B. Complete Experimental Results DASGD vs SGD

Overparam. Avg. DASGD Loss Loss Mean Diff. Loss diff t-test p L2 Diff L2 p Sparsity Diff Sparsity p Kurtosis Diff Kurtosis p

10% 92.37 0.330 0.320 0.001 0.000 0.003 0.205 0.0020 0.609
50% 204.07 0.007 0.990 0.000 0.684 0.004 0.137 -0.0040 0.234

100% 348.91 -0.025 0.974 -0.000 0.194 0.002 0.555 0.0007 0.824

Table 2. Summary of DASGD vs. SGD experiments across different over parameterization levels for 200 different seeds/runs. Metrics
reported as SGD minus DASGD.

(a) 10% overparam. (b) 50% overparam. (c) 100% overparam.

Figure 6. Comparison of test-difference distributions

(a) 10% overparam. (b) 50% overparam. (c) 100% overparam.

Figure 7. Example staleness distribution for each case of over parametrization

7



Generalization Analysis of Asynchronous SGD Variants

Figure 8. Box plots of per-run weight statistics for SGD vs. DASGD under 10% over-parametrization. Hollow circles denote individual
runs falling beyond 1.5 × IQR from the 25th or 75th percentile (statistical outliers).

Figure 9. Box plots of per-run weight statistics for SGD vs. DASGD under 50% over-parametrization. Hollow circles denote individual
runs falling beyond 1.5 × IQR from the 25th or 75th percentile (statistical outliers).

Figure 10. Box plots of per-run weight statistics for SGD vs. DASGD under 100% over-parametrization. Hollow circles denote individual
runs falling beyond 1.5 × IQR from the 25th or 75th percentile (statistical outliers).

8



Generalization Analysis of Asynchronous SGD Variants

C. Complete Experimental Results SA-ASGD vs SGD

Overparam. Avg. SA-ASGD Loss Loss Mean Diff. Loss diff t-test p L2 Diff L2 p Sparsity Diff Sparsity p Kurtosis Diff Kurtosis p

10% 92.52 -0.0237 0.937 0.0014 0.000 0.0014 0.539 -0.0031 0.2798
50% 203.93 -0.3393 0.466 0.0001 0.3728 -0.0017 0.5320 0.0052 0.1420

100% 348.642 0.2854 0.6713 0.000 0.7326 0.0017 0.5928 0.0010 0.7628

Table 3. Summary of SA-ASGD vs. SGD experiments across different over parameterization levels for 200 different seeds/runs. Metrics
reported as SGD minus SA-ASGD.

(a) 10% overparam. (b) 50% overparam. (c) 100% overparam.

Figure 11. Comparison of test-difference distributions

(a) 10% overparam. (b) 50% overparam. (c) 100% overparam.

Figure 12. Example staleness distribution for each case of over parametrization

9



Generalization Analysis of Asynchronous SGD Variants

Figure 13. Box plots of per-run weight statistics for SGD vs. SA-ASGD under 10% over-parametrization. Hollow circles denote individual
runs falling beyond 1.5 × IQR from the 25th or 75th percentile (statistical outliers).

Figure 14. Box plots of per-run weight statistics for SGD vs. SA-ASGD under 50% over-parametrization. Hollow circles denote individual
runs falling beyond 1.5 × IQR from the 25th or 75th percentile (statistical outliers).

Figure 15. Box plots of per-run weight statistics for SGD vs. SA-ASGD under 100% over-parametrization. Hollow circles denote
individual runs falling beyond 1.5 × IQR from the 25th or 75th percentile (statistical outliers).

10



Generalization Analysis of Asynchronous SGD Variants

D. Convergence Assumptions
D.1. Lipschitz Gradients

E[∥∇L(x)−∇L(y)∥] ≤ ζE[∥x− y∥] (1)

D.2. Bounded Gradient Moment

E[∥∇L(x)∥2] ≤ M2 (2)

D.3. µ-strong convexity

L(x)− L(y) ≥ ⟨∇L(y), x− y⟩+ µ

2
∥x− y∥22 (3)

D.4. Bounded Staleness

0 ≤ τ ≤ 2n (4)

Condition regarding the maximum staleness τ of any gradient to be at most 2n, where n is the number of workers. It is
shown empirically in (Zhang et al., 2016) that staleness is close to n and biggerthan 2n with a negligible probability (less
than 0.00001).

D.5. Learning Rate Upper Bound for SA-ASGD

α0 ≤ cC2 pt

C3

∑t−1
j=t−2n

1
pj

(5)

The property ensures that the learning rate α0 used is small enough relative to the staleness. In the formula c is the number
of gradients used for updated (so the total aggregation size), C2, C3 are problem-dependent constants and pt is the effective
staleness at update step t.

D.6. Stability Condition for SA-ASGD accumulated delayed update

C3 α0

c pt
+

C4 nα2
0

c2 pt

2n∑
κ=1

1

pt+κ
≤ 1 (6)

Guarantees that the effect of stale and accumulated updates does not destabilize training. In the formula n is a value chosen
to bound the overall staleness window (staleness control parameter), C3 and C4 bounds the effect of each gradient on the
loss and the effect of effect of gradient noise and staleness coupling respectively, pt is the effective staleness at update step t,
c is the number of gradients aggregated per server update and α0 is the base learning rate (that needs to be tuned).

11


