

COM-506

Prio: Private, Robust, and Scalable Computation of Aggregate Statistics

Federico Villa, Gabriele Stentella, Octave Charrin

Context

- Many modern devices collect data and send it to cloud services.
- Storing private data, the services create a single point of failure.
- Huge threat for privacy and security.
- The services need aggregate statistics.

Collect data from mobile apps.

Private compute services.

Spread data over multiple countries.

How do we split trust in a way that protects privacy **and** maintains functionality?

Introduction

Idea: the clients send an encrypted share of their data points to each aggregator.

How?

Goals:

1. Servers learn the output of the aggregation function (correctness).
2. But learn nothing more (privacy).
3. The system is robust \Rightarrow detects incorrect submissions.
4. The protocol is efficient and scalable
 \Rightarrow no heavy public-key cryptography operations.



Previous approaches

Randomized response

- Clients flip their bits with fixed probability $p < 0.5$
- Every bit leaks information (especially for low p). \Rightarrow **weak privacy**
- With p too high the aggregation becomes useless.
- Bounded client contribution.

Encryption

- Stronger privacy guarantees.
- Unbounded client contribution.
- Not scalable.

Prio - overview

- Small number of servers, large number of clients.
- Built using Secret-shared Non-Interactive Proofs (SNIPs) and Affine-aggregatable Encodings (AFEs).

Assumptions on the network

- PKI and basic cryptographic primitives.
- No synchrony.
- Adversary monitors the network and controls the packets.

Prio - simplified

Input: one bit integer x_i

Aggregation: sum $\sum_i x_i$

1. Private value secret-shared between s servers. $x_i = [x_i]_1 + \dots + [x_i]_s \in \mathbb{F}_p$
2. Each server add the share to its internal accumulator.
3. The servers publish the accumulators.
4. The sum of the accumulators is the desired aggregation.

- Privacy from secret sharing.
- **No robustness.**
- Only sum.

We use $[x]_s$ to denote the s th share of x :

$$x = \sum_s [x]_s$$



SNIPs: Secret-shared Non-Interactive Proofs

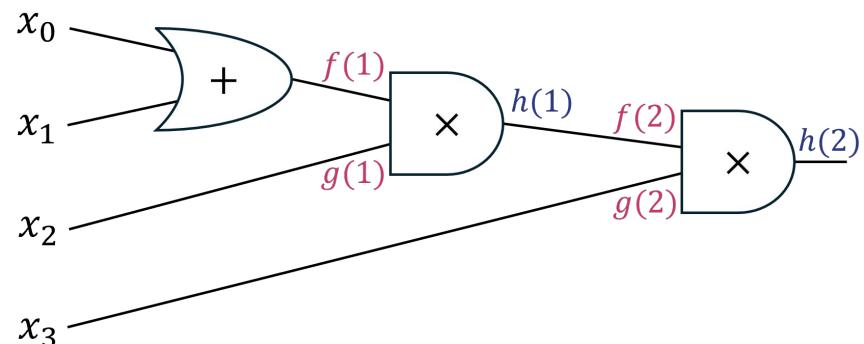
- Linear additive secret-sharing over field \mathbb{F}
- Validation predicate $\text{Valid} \Rightarrow$ encoded in an arithmetic circuit

SNIP protocol

1. Client evaluates the circuit.
2. Servers check consistency.
3. Polynomial validation \Rightarrow polynomial identity test.
Multiplication of shares.
4. Final computation and verification.

1. Client evaluates the circuit

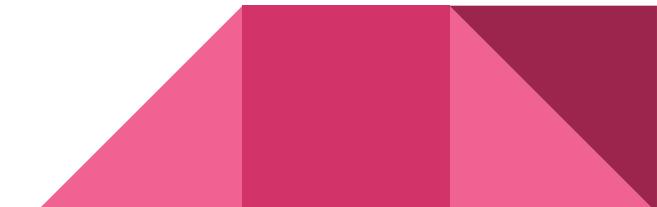
- Three randomized polynomials f, g, h .
- M multiplication gates.
- Left input u_t
- Right input v_t
- $h(t) = f(t) \cdot g(t) = u_t \cdot v_t \quad \forall t \in \{1, \dots, M\}$
- $u_0, v_0 \sim \mathbb{F}$



Output

$$[f(0)]_i \quad [g(0)]_i \quad [h]_i$$

shares of the coefficients of h



2. Servers check consistency

- Internal derivation of values $[f]_i, [g]_i$
- If all parties are honest: $f \cdot g = h$
- In case of malicious client: $\hat{h} \neq \hat{f} \cdot \hat{g}$

3. Polynomial validation

Goal: Detect with **high probability** a cheating client.

1. Sample a random value from the field.
2. Evaluate polynomials on the random value.
3. Get shares of $\sigma = r \cdot (\hat{f}(r) \cdot \hat{g}(r) - \hat{h}(r))$
4. Check the sum of those shares is 0.

If $\hat{h} \neq \hat{f} \cdot \hat{g}$ then the polynomial represented by σ is of degree at most $2M + 1$: with random evaluation, we detect the cheat with probability

$$\geq 1 - \frac{2M+1}{|\mathbb{F}|}$$

Beaver's Multi-Party Computation

Clients choose the triple $(a, b, c) \in \mathbb{F}^3$ and send shares to the servers.

4. Final computation and verification

- Share the values of the shares of the output of `Valid`
- Check that they sum up to 1.

SNIP proof tuple $\pi = (f(0), g(0), h, \underbrace{a, b, c}_{\text{Beaver's triple}})$

Efficiency

- Server-to-server communication cost same as local cost of circuit evaluation.
- Client-to-server communication linear in the size of the circuit.

Desired Properties of a useful SNIP

- **Correctness:** If all parties are honest, the servers will accept x.
- **Soundness:** If all servers are honest, and if $\text{Valid}(x) \neq 1$, then the servers will almost always reject x, no matter how the client cheats.

Formal definition

1. Run the adversary \mathcal{A} . For each server i , the adversary outputs a set of values:

- $[x]_i \in \mathbb{F}^L$,
- $([f(0)]_i, [g(0)]_i) \in \mathbb{F}^2$,
- $[h]_i \in \mathbb{F}_{2M}[X]$ of degree at most $2M$, and
- $([a]_i, [b]_i, [c]_i) \in \mathbb{F}^3$.

2. The *Master server* chooses a random $r \leftarrow \mathbb{F}$. Each server compute their shares $[f]_i$ and $[g]_i$ as in the real protocol, and evaluate $[f(r)]_i$, $[r \cdot g(r)]_i$, $[r \cdot h(r)]_i$, and $[h(M)]_i$.

3. The servers compute $h(M) = \sum_i [h(M)]_i$, and

$$\sigma = r \cdot (f(r)g(r) - h(r)) + (c - ab)$$

4. We say that the adversary wins the game if:

$$h(M) = 1, \quad \sigma = 0, \quad \text{and} \quad \text{Valid}(x) \neq 1$$

Soundness:

$$\Pr[\mathcal{A} \text{ Wins}] \leq \frac{2M + 1}{|\mathbb{F}|}$$

$$\sigma = P(r)$$

\mathcal{A} Wins if:

$$h(M) = 1, \quad \sigma = 0, \quad \text{and} \quad \text{Valid}(x) \neq 1$$

$$P(t) = t \cdot Q(t) + (c - ab)$$

$$Q(t) = f(t)g(t) - h(t)$$

Case $fg \neq h$:

- P is a non-zero polynomial of degree at most $2M+1$.
- The choice of r is independent of (a, b, c) and Q , since the adversary must produce these values before r is chosen.

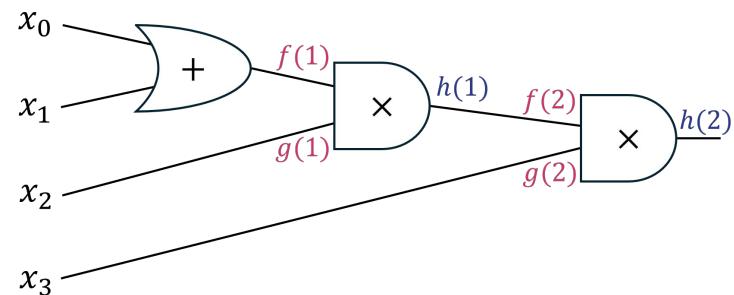
⇒ The choice of r is independent of P .

- P has at most $2M+1$ zeros in \mathbb{F} .

$$\Rightarrow \Pr[P(r) = \sigma = 0] \leq (2M+1)/|\mathbb{F}|$$

Case $fg = h$:

- By induction: $h(M) = \text{Valid}(x)$ (*wlog assume that the circuit ends with a multiplication gate*)



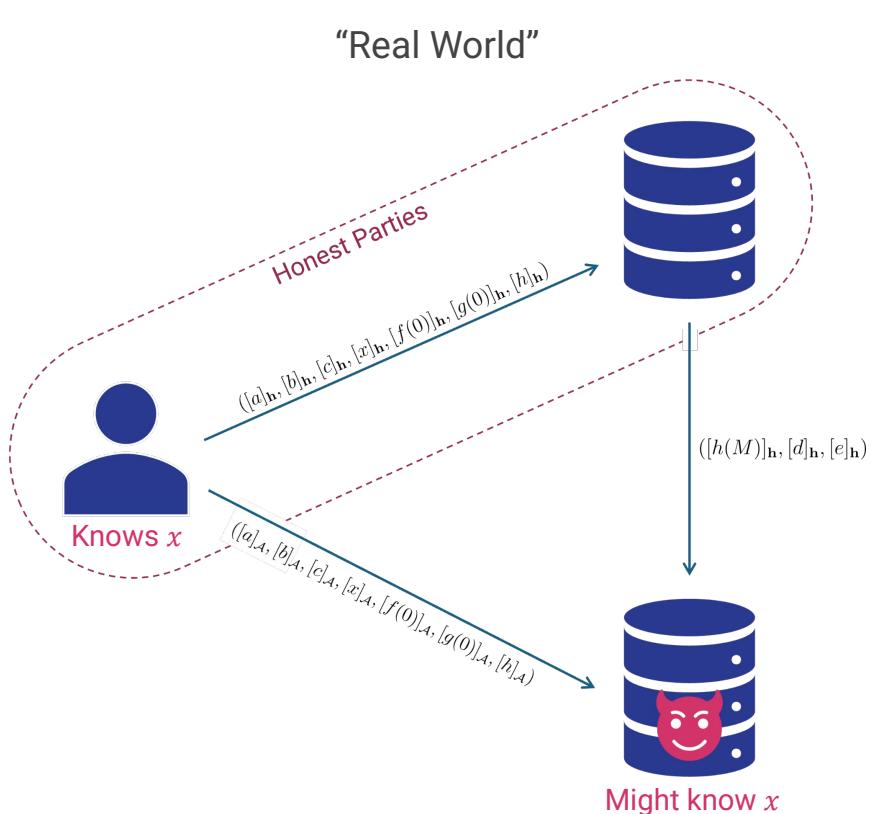
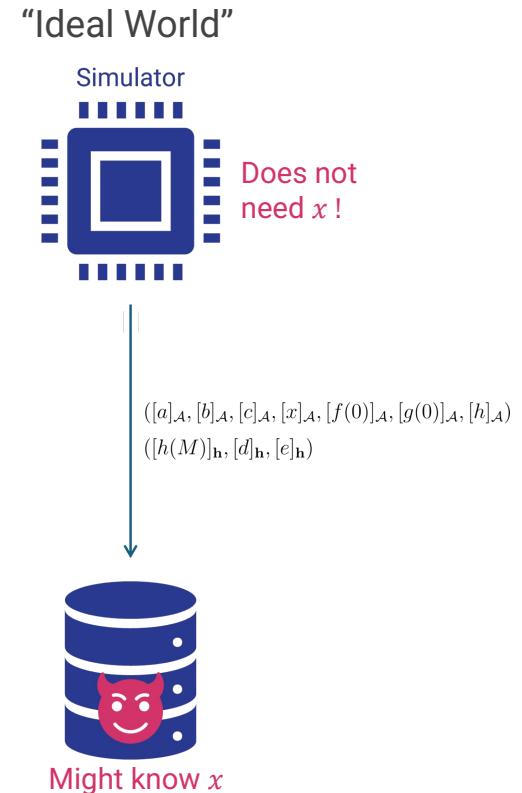
$$\Rightarrow \Pr[h(M) = 1 \text{ and } \text{Valid}(x) \neq 1] = 0$$

In both cases: $\Pr[\mathcal{A} \text{ Wins}] \leq \frac{2M+1}{|\mathbb{F}|}$

Desired Properties of a useful SNIP

- **Correctness:** If all parties are honest, the servers will accept x .
- **Soundness:** If all servers are honest, and if $\text{Valid}(x) \neq 1$, then the servers will almost always reject x , no matter how the client cheats.
- **Zero knowledge:** If the client and at least one server are honest, then the servers learn nothing about x , except that $\text{Valid}(x) = 1$.

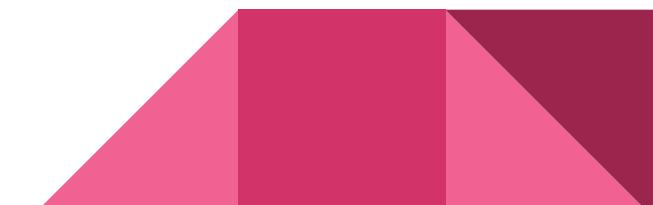
Zero Knowledge - Proof Sketch



Zero Knowledge - Proof Sketch

In this game, the adversary tries to distinguish the two worlds.

- The simulator generates the initial adversary view **at random**.
- We can show that **the two views are distributed identically**.
(random sampling of $r, f(0)$ and $g(0)$ in the real world + hiding from secret sharing)
- Since the simulator does not know x :
⇒ Participating in the SNIP gives no extra information about x .



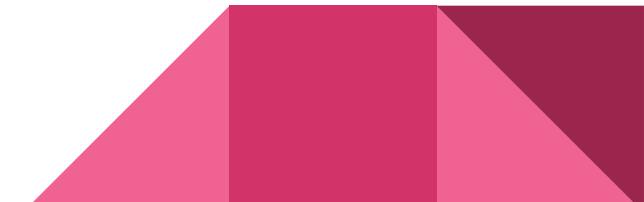
Affine-aggregatable encodings (AFEs)

So far we can:

- Compute private sums over client-provided data (Secret-sharing)
- Check arbitrary validation predicate against data (SNIP)

How can we compute more complex statistics ?

Idea: Encode private data to make the statistic computable over the sum of encoding.

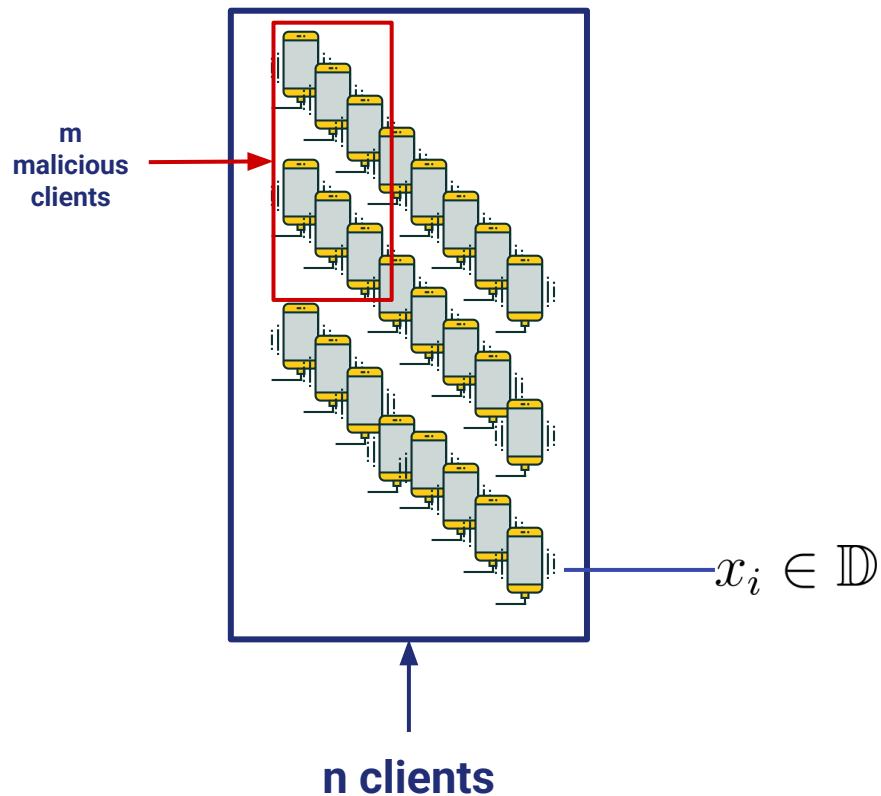
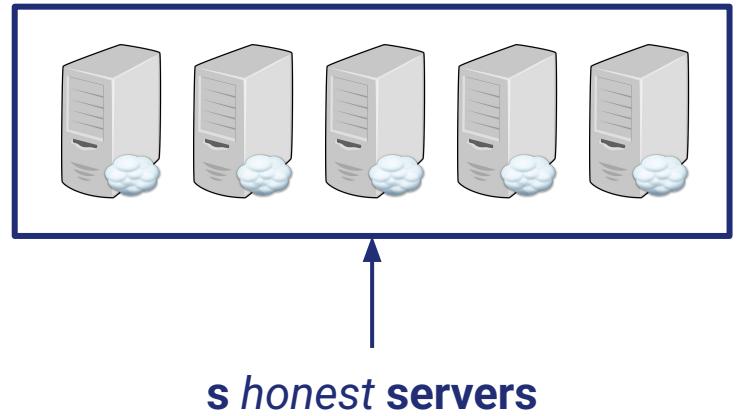


AFE concrete example

Computing the variance of b -bit integers: $\text{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

- $\text{Encode}(x) = (x, x^2, \beta_0, \beta_1, \dots, \beta_{b-1})$ Secret-sharing
- $\text{Valid}(\text{Encode}(x)) = \left(x = \sum_{i=0}^{b-1} 2^i \beta_i \right) \wedge (x \cdot x = x^2) \wedge \bigwedge_{i=0}^{b-1} [\beta_i \cdot (\beta_i - 1) = 0]$ SNIP
- $(\sigma_0, \sigma_1) = \sum_{i=1}^n \text{Trunc}_2(\text{Encode}(x_i)) = \sum_{i=1}^n (x_i, x_i^2) = \left(\sum_{i=1}^n x_i, \sum_{i=1}^n x_i^2 \right)$
- $\text{Decode}(\sigma) = \frac{1}{n} (\sigma_1 - (\sigma_0)^2)$

7. Prio Protocol - Setting



$$f : \mathbb{D}^{n-m} \rightarrow \mathbb{A}$$

7. Prio Protocol - 4 steps

$$x_i \in \mathbb{D}$$

1. Upload phase

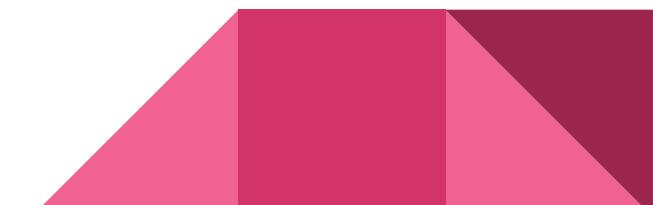
- input encoded using Affine-Aggregatable Encoding
- AFE encoded vector is split into secret shares
- SNIP proof is generated to prove data is well formed
- input shares and SNIP proof are sent to the servers

$$y_i \in \mathbb{F}^k$$

$$y_i \leftarrow \text{Encode}(x_i)$$

$$[y_i]_1, [y_i]_2, \dots, [y_i]_s$$

$$y_i = [y_i]_1 + [y_i]_2 \dots + [y_i]_s$$



7. Prio Protocol - 4 steps

2. Validation phase

- servers jointly verify the SNIP proofs received
 - rejects not well-formed submission
 - does not reveal information about the underlying data (except validity)
 - ensures robustness against malformed/malicious submissions

$$x_i \in \mathbb{D} \iff \text{Valid}(x_i) = 1$$

7. Prio Protocol - 4 steps

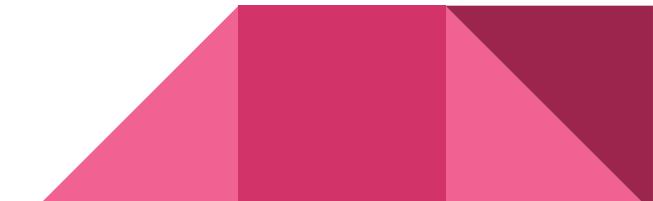
3. Aggregation phase

- each server initializes an accumulator to zero:
- for every valid client submission increments the accumulator
 - only truncated version of the client share carry necessary information

$$A_j \in F^{k'}$$

$$A_j \leftarrow 0$$

$$A_j \leftarrow A_j + Trunc_{k'}([y_i]_j) \in \mathbb{F}^{k'}$$



7. Prio Protocol - 4 steps

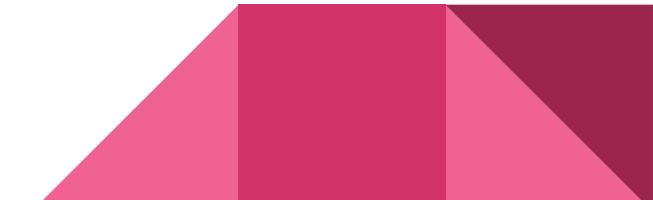
4. Publish phase

- servers publish their individual accumulator values
- final aggregate is computed by summing accumulators
- final aggregate statistic obtained with AFE decoding:

$$A_1, A_2, \dots, A_s$$

$$Decode(\sigma) \in \mathbb{A}$$

$$\sigma = \sum_{j=1}^s A_j = \sum_{i=1}^n Trunc_{k'} y_i$$



Protocol Security Properties

- **robustness** against malicious clients holds if:
 - SNIP construction is sound - malicious client submissions are detected via SNIPs
- **f-privacy**, only the final aggregate statistic is revealed, holds if:
 - one server is honest
 - AFE is f-private
 - SNIP is zero-knowledge
- **anonymity** holds if:
 - function f is symmetric - the order of inputs does not affect the output

$$f(x_1, \dots, x_{n-m}) = f(x'_1, \dots, x'_{n-m})$$

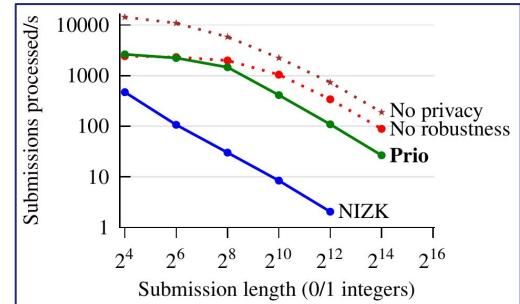
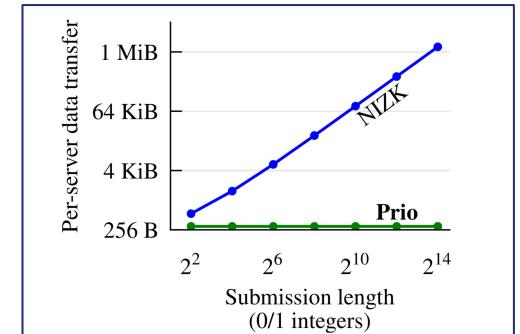
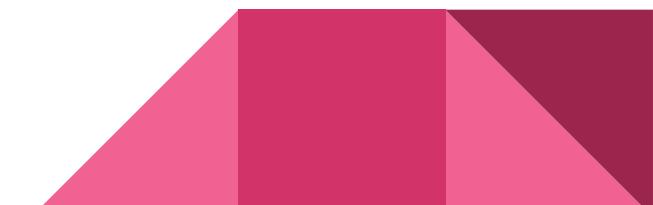
$$(x'_1, \dots, x'_{n-m}) = SORT(x_1, \dots, x_{n-m})$$

8. Evaluation

- Prio Client performance:
 - ~0.03 sec for a 100-integer submission on a workstation;
 - ~0.1 sec on a smartphone (2010-12 hardware).
- Prio Server throughput:
 - Outperforms NIZK-based scheme by 10x on average
 - Adding more server does not significantly affect throughput

Field size	Workstation		Smartphone	
	87-bit	265-bit	87-bit	265-bit
Multipl. in field (μ s)	1.013	1.485	11.218	14.930
L = 10	0.003	0.004	0.017	0.024
L = 100	0.024	0.035	0.110	0.167
L = 1000	0.214	0.334	1.028	2.102

Time in seconds for a client to generate a Prio submission of L four-bit integers

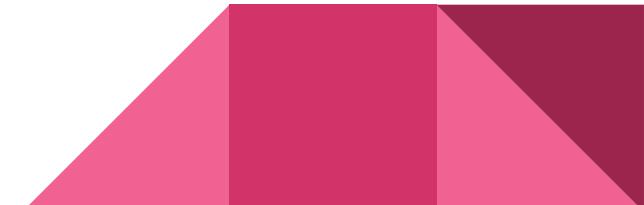


9. Discussion - Limitations

- **Selective Denial-of-Service Attack**
- Intersection Attack
- *Robustness against faulty servers*
 - May be implemented but lowers the privacy guarantees
 - robust against k faulty servers (out of s) \Rightarrow protects privacy against at most $s-k-1$ malicious servers

$\cancel{x_1}, \cancel{x_2}, \dots, x_i, \dots, \cancel{x_n}$

$f(x_{honest}, x_{evil_1}, \dots, x_{evil_m})$



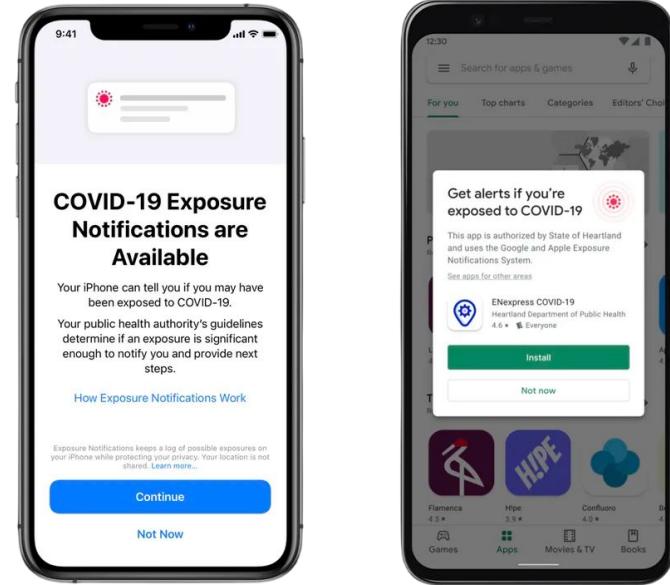
9. Discussion - Limitations

- Selective Denial-of-Service Attack
- **Intersection Attack**
- *Robustness against faulty servers*
 - May be implemented but lowers the privacy guarantees
 - robust against k faulty servers (out of s) \Rightarrow protects privacy against at most $s-k-1$ malicious servers

$$\begin{array}{ccc} x_1, x_2, \dots, x_n & & x'_1, x'_2, \dots, x'_{n-1}, \cancel{x'_n} \\ \downarrow & \downarrow & \downarrow \\ f(x_1, x_2, \dots, x_n) & & f(x'_1, x'_2, \dots, x'_{n-1}) \end{array}$$

9. Discussion - Deployments

- Many large-scale deployments since paper publication.
- During the *COVID-19* pandemic, *Apple* and *Google* introduced *Exposure Notification Privacy-preserving Analytics* to alert users about potential contact with individuals infected.
- Based on *Prio*.
- No one could access information about who received notifications or the identities of contacts.
- Aggregated insight were sent to *public health agencies*.



Conclusion

- Prio allows the aggregation of complexe statistics on private client data.
- Uses additive secret-sharing, SNIP and AFEs.
- More efficient and scalable than traditional protocols.
- Has many practical applications.

Thank you for your attention !

Appendix

Detailed computation for σ

Define the following values, where s is a constant representing the number of servers:

$$\begin{aligned}x &= \sum_i [x]_i & a &= \sum_i [a]_i \\f(r) &= \sum_i [f(r)]_i & b &= \sum_i [b]_i \\r \cdot g(r) &= \sum_i [r \cdot g(r)]_i & c &= \sum_i [c]_i \\h(M) &= \sum_i [h]_i(M) & d &= f(r) - a \\e &= r \cdot g(r) - b\end{aligned}$$

$$\begin{aligned}\sigma &= \sum_i (de/s + d[b]_i + e[a]_i + [c]_i - [r \cdot h(r)]_i) \\&= de + db + ea + c - r \cdot h(r) \\&= (f(r) - a)(r \cdot g(r) - b) + (f(r) - a)b + (r \cdot g(r) - b)a + c - r \cdot h(r) \\&= r \cdot (f(r)g(r) - h(r)) + (c - ab)\end{aligned}$$