
Federico Villa, Gabriele Stentella, Octave Charrin

COM-506

Prio: Private, Robust, and Scalable 
Computation of Aggregate Statistics



Context

● Many modern devices collect data and send it to cloud 
services.

● Storing private data, the services create a single point 
of failure.

● Huge threat for privacy and security.
● The services need aggregate statistics.

How do we split trust in a way that protects 
privacy and maintains functionality?

Collect data from 
mobile apps.

Private compute 
services.

Spread data over 
multiple countries.

2



Introduction

Idea: the clients send an encrypted share of their data points to each aggregator.

How?

Goals:

1. Servers learn the output of the aggregation function (correctness).
2. But learn nothing more (privacy).
3. The system is robust ⇒ detects incorrect submissions.
4. The protocol is efficient and scalable 

⇒ no heavy public-key cryptography operations.

3



Previous approaches

Randomized response

● Clients flip their bits with fixed probability p < 0.5
● Every bit leaks information (especially for low p). ⇒ weak privacy
● With p too high the aggregation becomes useless.
● Bounded client contribution.

Encryption

● Stronger privacy guarantees.
● Unbounded client contribution.
● Not scalable.

4



Prio - overview

● Small number of servers, large number of clients.

● Built using Secret-shared Non-Interactive Proofs (SNIPs) and 

Affine-aggregatable Encodings (AFEs).

Assumptions on the network

● PKI and basic cryptographic primitives.

● No synchrony.

● Adversary monitors the network and controls the packets.

5



Prio - simplified

Input: one bit integer

Aggregation: sum 

1. Private value secret-shared between s servers.
2. Each server add the share to its internal accumulator.
3. The servers publish the accumulators.
4. The sum of the accumulators is the desired aggregation.

● Privacy from secret sharing.
● No robustness.
● Only sum.

6

We use         to denote 
the sth share of x:



SNIPs: Secret-shared Non-Interactive Proofs

● Linear additive secret-sharing over field
● Validation predicate                ⇒ encoded in an arithmetic circuit

SNIP protocol

1. Client evaluates the circuit.
2. Servers check consistency.
3. Polynomial validation ⇒ polynomial identity test.

Multiplication of shares.
4. Final computation and verification.

7



1. Client evaluates the circuit

● Three randomized polynomials           .
●      multiplication gates.
● Left input
● Right input
● .
●

Output

8

shares of the coefficients of



2. Servers check consistency

● Internal derivation of values
● If all parties are honest:
● In case of malicious client:

3. Polynomial validation
Goal: Detect with high probability a cheating client.

1. Sample a random value from the field.
2. Evaluate polynomials on the random value.
3. Get shares of
4. Check the sum of those shares is 0.

If                   then the 
polynomial 
represented by σ is of 
degree at most
              : with random 
evaluation, we detect 
the cheat with 
probability

9

Beaver’s Multi-Party 
Computation
Clients choose the triple

and send shares to the 
servers.



4. Final computation and verification

● Share the values of the shares of the output of
● Check that they sum up to 1.

Efficiency
- Server-to-server communication cost same as local cost 

of circuit evaluation.
- Client-to-server communication linear in the size of the 

circuit.

10

SNIP proof tuple
Beaver’s triple



Desired Properties of 
a useful SNIP

● Correctness: If all parties are honest, 
the servers will accept x.

● Soundness: If all servers are honest, 
and if Valid(x) != 1, then the servers 
will almost always reject x, no matter 
how the client cheats.

11



Formal definition

Soundness:

12



Case 𝒇𝒈≠𝒉 :

● 𝑃 is a non-zero polynomial of degree at 
most 2𝑀+1.

● The choice of r is independent of (a, b, c) 
and 𝑄, since the adversary must produce 
these values before r is chosen.

⇒ The choice of r is independent of 𝑃.

● 𝑃 has at most 2𝑀+1 zeros in 𝐅.

⇒ Pr[ 𝑃(r) = σ = 0 ] ≤ (2𝑀+1)/|𝐅|

Case 𝒇𝒈=𝒉 :

● By induction: h(𝑀) = Valid(𝑥) (wlog assume 
that the circuit ends with a multiplication gate)

⇒ Pr[ h(𝑀) = 1 and Valid(𝑥) ≠ 1 ] = 0

A Wins if:

In both cases:
13



Desired Properties of 
a useful SNIP

● Correctness: If all parties are honest, 
the servers will accept x.

● Soundness: If all servers are honest, 
and if Valid(x) != 1, then the servers 
will almost always reject x, no matter 
how the client cheats.

● Zero knowledge: If the client and at 
least one server are honest, then the 
servers learn nothing about  x, 
except that Valid(x) = 1.

14



“Real World” “Ideal World”

Zero Knowledge - Proof Sketch

Knows 𝑥 

Might know 𝑥 Might know 𝑥 

Does not 
need 𝑥 !

15



In this game, the adversary tries to distinguish the two worlds.

● The simulator generates the initial adversary view at random.
● We can show that the two views are distributed identically.

(random sampling of r, f(0) and g(0) in the real world + hiding from secret sharing)

● Since the simulator does not know 𝑥:

⇒ Participating in the SNIP gives no extra information about 𝑥.

Zero Knowledge - Proof Sketch

16



Affine-aggregatable encodings (AFEs)

So far we can:

● Compute private sums over client-provided data (Secret-sharing)
● Check arbitrary validation predicate against data (SNIP)

How can we compute more complex statistics ?

Idea: Encode private data to make the statistic computable over the sum of 
encoding.

17



AFE concrete example
Computing the variance of b -bit integers:

●  

 

●  

 

●  

 

●

Secret-sharing

SNIP

18



7. Prio Protocol - Setting 

n clients

s honest servers

m 
malicious 

clients

19



7. Prio Protocol - 4 steps

1. Upload phase

● input encoded using Affine-Aggregatable Encoding 

● AFE encoded vector is split into secret shares

● SNIP proof is generated to prove data is well formed

● input shares and SNIP proof are sent to the servers

20



7. Prio Protocol - 4 steps

2. Validation phase

● servers jointly verify the SNIP proofs received  
○ rejects not well-formed submission 

○ does not reveal information about the underlying data (except validity) 

○ ensures robustness against malformed/malicious submissions

21



7. Prio Protocol - 4 steps

3. Aggregation phase

● each server initializes an accumulator to zero:   

● for every valid client submission increments the accumulator
○ only truncated version of the client share carry necessary information

22



7. Prio Protocol - 4 steps

4. Publish phase

● servers publish their individual accumulator values

● final aggregate is computed by summing accumulators

● final aggregate statistic obtained with AFE decoding:

23



Protocol Security Properties

● robustness against malicious clients holds if:
○ SNIP construction is sound - malicious client submissions are detected via SNIPs

● f-privacy, only the final aggregate statistic is revealed, holds if:
○ one server is honest
○ AFE is f-private
○ SNIP is zero-knowledge

● anonymity holds if:
○ function f is symmetric - the order of inputs does not affect the output

24



8. Evaluation

● Prio Client performance: 
○ ~0.03 sec for a 100-integer submission on a workstation; 

~0.1 sec on a smartphone (2010-12 hardware).
● Prio Server throughput: 

○ Outperforms NIZK-based scheme by 10x on average
○ Adding more server does not significantly affect throughput

25



9. Discussion - Limitations

● Selective Denial-of-Service Attack
● Intersection Attack
● Robustness against faulty servers

○ May be implemented but lowers the privacy guarantees
○ robust against k faulty servers (out of s) ⇒ protects privacy against at most s-k-1 malicious 

servers

26



9. Discussion - Limitations

● Selective Denial-of-Service Attack
● Intersection Attack
● Robustness against faulty servers

○ May be implemented but lowers the privacy guarantees
○ robust against k faulty servers (out of s) ⇒ protects privacy against at most s-k-1 malicious 

servers

27



9. Discussion - Deployments 

● Many large-scale deployments since paper publication.

● During the COVID-19 pandemic, Apple and Google introduced 

Exposure Notification Privacy-preserving Analytics to alert 

users about potential contact with individuals infected.

● Based on Prio.

● No one could access information about who received 

notifications or the identities of contacts.

● Aggregated insight were sent to public health agencies.

28



Conclusion

● Prio allows the aggregation of complexe statistics on private client data.
● Uses additive secret-sharing, SNIP and AFEs.
● More efficient and scalable than traditional protocols.
● Has many practical applications.

Thank you for your attention !

29



Appendix

30



Detailed computation for σ

31


