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Abstract
The paper [2] introduces Prio, a system designed to privately
and robustly compute aggregate statistics from client data
without sacrificing scalability; it utilizes “Secret-shared Non-
Interactive Proofs (SNIPs)” and “Affine-aggregatable Encod-
ings (AFEs)” to achieve its goals. Prio can be practically de-
ployed in a variety of scenarios, including gathering browser
statistics and training machine learning models.

1 Introduction
Nowadays, it is common for electronics of everyday use to
be connected to cloud services which aim to store telemetry
data from the users of the devices or services, and learn ag-
gregate statistics. Since a centralized storage of private data
represents a risk for both privacy and security, many of those
services have implemented a “randomized response” mecha-
nism. This approach allows a client that has to communicate
a bit representing a private information, to flip it with prob-
ability p < 0.5, and over a large number of collected bits it
is still possible to compute useful statistics. However, with
p too small every bit still leaks information, while with p
too high the accuracy decreases so much that the aggregation
becomes useless. If the clients instead send encrypted values,
the privacy guarantees are stronger, but the clients acquire
the capability of influencing the aggregation by an arbitrary
value. Even if it is possible to use zero-knowledge proofs as a
protection, scaling this solution becomes impractical for end
users. Prio makes use of SNIPs to allow the clients to submit
a proof of correctness together with its private data, so that
the server can validate the submission without seeing data in
the clear.

2 System goals
Since Prio needs authenticated and encrypted channels be-
tween each pair of protocol participants, the authors assume
the existence of a PKI, but they don’t assume a synchronous
network and handle the case where an attacker controls a large
number of clients, has full access to the network and controls
all servers except for one. Prio aims to achieve three security
properties: Anonymity, privacy, and robustness.

• Anonymity: Prio ensures that an adversary cannot link
specific honest clients to their submitted data, even if the
adversary controls all but one server and all other clients.

The adversary may see the set of honest clients’ in-
puts but cannot determine which client submitted which
value.

• Privacy: Prio guarantees that an adversary controlling
all but one server and any number of clients learns noth-
ing beyond the output of the aggregation function. The
adversary’s view of the protocol can be simulated using
only this output.

• Robustness: Prio ensures that malicious clients can only
affect the system’s output by misreporting their own data,
not by otherwise corrupting the result. However, it does
not protect against adversarial servers.

Providing robustness against faulty servers weakens privacy
because if the system tolerates k faulty servers, then s− k
dishonest servers can still compute individual client submis-
sions, compromising confidentiality. Specifically, dishonest
servers could evaluate the aggregation function over a single
submission. Additionally, enhancing robustness incurs per-
formance costs, as it would require abandoning leader-based
optimizations, where a designated “leader” server coordinates
the processing of client submissions to improve efficiency.

3 A simple scheme

A simplified version of Prio enables privacy-preserving com-
putation of the sum of clients’ one-bit private values using
secret-sharing. The scheme consists of three steps. Initially,
each client splits its input value into shares, and submits them
to the servers. Then, all the servers add the shares they receive
to their internal accumulator. Finally, the servers publish their
internal values, and every participant can compute the sum
of the accumulators. While this scheme ensures privacy by
preventing servers from learning individual inputs, it lacks ro-
bustness since a single malicious client can corrupt the output;
Prio improves upon this by adding robustness against mali-
cious clients and extending functionality to support various
aggregation functions beyond sums.

4 Protecting correctness with SNIPs

A SNIP is a cryptographic tool that allows the server to check
the inputs they receive are well-formed, without learning noth-
ing about single inputs. The construction of these tools re-
lies on a linear additive secret-sharing scheme over a finite
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field F. Moreover, it uses an arithmetic circuit Valid, com-
posed of gates representing operations in F. Given the num-
ber M of multiplication gates in Valid, the protocol works
in a field such that 2M + 2≪ |F|. The client evaluates the
circuit over its private data, so that she knows the input values
ut and vt for each multiplication gate from 1 to M, while
she samples i.i.d. from F the values of u0 and v0. Then,
she defines the lowest-degree polynomials for which holds
f (t) = ut ,g(t) = vt∀t ∈ {0, . . . ,M}, and h = f ·g. The client
then submits the shares of the random values [u0]i, [v0]i

1, and
the shares of the coefficients of h, sending only the ith share
to server i. The servers, thanks to the linearity of the secret
sharing scheme, can locally compute the shares of f and g.
Each server indeed knows a share of the private input x, and
the shares of all outputs of multiplication gates, so it is pos-
sible to derive all the other values. Then, the servers need
a method to detect with high probability a cheating client:
They use a randomized polynomial identity test, based on the
fact that if some clients submit malicious values for which
ĥ(t) ̸= f̂ (t) · ĝ(t) for some t, then the servers can choose a
random point r and evaluate r · ( f̂ (r) · ĝ(r)− ĥ(r)). This poly-
nomial has at most 2M+1 zeros in the field, so the servers de-
tect the cheating client with probability≥ 1−((2M+1)/|F|).
To compute locally the shares of r · f̂ (r) · ĝ(r), the servers use
an adaptation of the MPC technique of Beaver [1]. For this
computation, the clients generate a triple a,b,c∈F3 for which
holds a ·b = c and send shares of these values to the servers,
hence the final SNIP proof is a tuple π=( f (0),g(0),h,a,b,c).
Thanks to the multiplication of the polynomial by a random
value r, even if the malicious clients choose adversarially
the triple of values (a ·b = c+α), the polynomial on which
the test is performed remains a non-zero polynomial. Finally,
each server publishes her share of σ = r · ( f̂ (r) · ĝ(r)− ĥ(r))
and they accept the input data only if the sum of all the shares
of σ is 0. In the final step of the protocol the servers only need
to publish the shares of the output values: This, with the input
shares [x]i, allow to verify that Valid(x) = 1.

5 Security Analysis of the SNIP

In this section, we analyze the security of the SNIP construc-
tion. For a SNIP to be useful in this context, it must sat-
isfy three key properties: Correctness, Soundness and Zero-
knowledge. Correctness ensures that if all parties behave
honestly, the servers will accept a valid input x. This property
holds by construction. Soundness and Zero-knowledge are
more nuanced and are analyzed in the following subsections.

5.1 Soundness
In the context of this paper, soundness ensures that if all
servers are honest and Valid(x) ̸= 1, then for any malicious
clients, even ones running in super-polynomial time, the
servers will reject x, with overwhelming probability.

1We use [x]i to denote the ith share of x: x = ∑i[x]i

We now prove that the SNIP construction is sound. This
property is formalized through the following experiment, in
which the adversary attempts to generate an input x and a
SNIP proof π = ( f (0),g(0),h,a,b,c), such that Valid(x) ̸= 1
and yet the servers accept x as valid. Since the computation
between multiplication gates in the circuits are affine trans-
formations, we can, without loss of generality, assume that
the output of the Valid circuit corresponds to the final mul-
tiplication gate’s output wire. Let M denote the number of
multiplication gates in Valid. The adversarial game proceeds
as follows:

1. Run the adversary A . For each server i, the adversary
outputs a set of values: [x]i ∈ FL, ([ f (0)]i, [g(0)]i) ∈ F2,
[h]i ∈ F2M[X ], and ([a]i, [b]i, [c]i) ∈ F3.

2. Choose r at random: r←$∈ F. Each server computes
their shares [ f ]i and [g]i as in the real protocol, and eval-
uates [ f (r)]i, [r ·g(r)]i, [r ·h(r)]i, and [h(M)]i.

3. The servers compute h(M) = ∑i[h(M)]i, and σ = r ·
( f (r)g(r)−h(r))+(c−ab), where we use additive se-
cret sharing notation: x = ∑i[x]i. This computation fol-
lows Beaver’s MPC protocol [1], assuming a supposedly
valid multiplication triple (a,b,c). Note that since A is
malicious, there is no guarantee that ab = c.

4. We say that the adversary wins the game if h(M) =
1, σ = 0, and Valid(x) ̸= 1.

The SNIP protocol is sound if, for all adversaries A , including
computationally unbounded ones, the probability of winning
the game, over the uniform choice of r in F, is bounded by:
Pr[W ]≤ (2M+1)/|F|.

First, in the case where f g ̸= h, we can express σ as the
evaluation of the polynomial P(t) = t ·Q(t)+(c−ab), where
Q = f g−h. Since Q is nonzero, P is also a nonzero polyno-
mial (no matter how Q and (a,b,c) are related) of degree at
most 2M+1. Because the adversary A must generate (a,b,c)
and Q before r is chosen, r and P are independent. Because of
its degree, P has at most 2M+1 zeros in F. Thus, the proba-
bility that P(r) = 0, i.e., σ = 0 is at most (2M+1)/|F|, which
implies soundness.

Now consider the case where f g = h. We can prove by
induction that h(M) = Valid(x) (Appendix D.1 of [2]), mean-
ing the servers can compute the true value of Valid and detect
when the adversary is trying to submit an invalid input value.
Therefore, Pr[h(M) = 1 and Valid(x) ̸= 1] = 0, which also
implies soundness in this case.

Since soundness requires bounding the probability of the
adversary successfully forging an invalid proof, and we have
shown that Pr[W ]≤ (2M+1)/|F|, the SNIP presented in the
paper is sound.

5.2 Zero-knowledge
For conciseness, we omit the formal proof of zero-knowledge
and present only the core arguments (see Appendix D.2 of [2]
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for the full proof).
To formally define zero-knowledge, we consider two exper-

iments: 1) A “real-world” experiment, where the adversary is
given data as in the actual protocol; 2) An “ideal-world” ex-
periment, where the adversary interacts with data generated by
a simulator. The SNIP protocol satisfies the zero-knowledge
property if, even when the adversary is given x as input, she
has no advantage in distinguishing these two experiments.
Since all servers play symmetric roles and all exchanged val-
ues are additively secret-shared, it suffices to prove security
in the case of a single adversarial server interacting with a
single honest server.

The core idea of the proof is to construct an explicit sim-
ulator that generates the adversary’s view in the ideal world.
The simulator proceeds as follows: It generates the adver-
sary’s view ([a]A , [b]A , [c]A , [x]A , [ f (0)]A , [g(0)]A , [h]A) uni-
formly at random in F, and computes the honest server’s
corresponding values ([h(M)]h, [d]h, [e]h) accordingly before
sharing them with A .

Since f (0) is sampled uniformly at random in F in the
real world, a well-chosen r ensures that f (r) is also uni-
formly distributed and independent of the adversary’s initial
view, even though she has access to x and can reconstruct
f (1), . . . , f (M) (and similarly for g). Moreover, the perfect
secrecy of the secret-sharing scheme ensures that the values
a,b,c,x, f (0),g(0),h are perfectly hidden. As a result, the
adversary’s view in the ideal world (where these values are
generated uniformly at random) remains statistically indistin-
guishable from the real-world distribution.

Thus, the adversary’s view at the start of both experiments
is identically distributed, providing strong intuition as to why
she cannot distinguish between the real and ideal worlds. With
a more detailed formalization of the simulator, this argument
extends to a full proof that the SNIP protocol satisfies the
zero-knowledge property.

6 AFEs

So far, the protocol presented allows computing private sums
over client-provided data (Section 3) and to check arbitrary
validation predicate against secret-shared data (Section 4).
Now we want to compute more sophisticated statistics, for
example f (x1, . . . ,xn), over the private client data x1, . . . ,xn.
This is where Affine-aggregatable encodings (AFEs) come
into play.

Formally, an AFE consists of three efficient algorithms
defined with respect to a field F, and two integers k and k′,
where k′ ≤ k:

• Encode(x): Maps an input x to its encoding in Fk,

• Valid(y): Return true if and only if y ∈ Fk is a valid
encoding of some valid input x.

• Decode(σ): Takes σ = ∑iTrunck′(Encode(xi)) ∈ Fk′ as
input, and outputs f (x1, . . . ,xn). The Trunc(·) function

outputs the first k′ components of its input.

As an example, let’s look at the AFE that allows com-
puting the variance of the set of b-bit integers (x1, . . . ,xn),
and see how it integrates into the Prio protocol. First, each
client encodes its integer x as (x,x2,β0, . . . ,βb−1) where
(β0, . . . ,βb−1) ∈ {O,1}b is the binary representation of x.
The clients then share those encoding according to the
additive secret-sharing mechanism described in Section 3.
To check this encoding, the Valid algorithm checks that
the following equalities hold over F: Valid(Encode(x)) =(

x = ∑
b−1
i=0 2iβi

)
∧ (x · x = x2)∧

∧b−1
i=0 [(βi−1) ·βi = 0]. This

verification is performed using the SNIP construct described
in Section 4. Then, the servers aggregate their shares by
summing the first k′ = 2 components of each encoding, lead-
ing to (σ0,σ1) = ∑

n
i=1Trunck′(Encode(xi)) = ∑

n
i=1(xi,x2

i ) =
(∑xi,∑x2

i ). Finally, the variance can be computed using the
identity Var(X) = E[X2]−E[X]2: Decode(σ) = (σ1−σ2

0)/n.
This approach not only enables the computation of com-

plex statistics like variance but also extends to more advanced
tasks, such as training machine learning models on private
client data, while preserving data privacy and ensuring cor-
rectness.

7 Prio Protocol Overlook

Consider a setting with n clients, where m of them are mali-
cious and n−m are honest. Each honest client holds a private
input xi ∈ D (for i ∈ {1, ...,n−m}) and there are s servers
that wish to compute an aggregate statistic via a function
f : Dn−m→A. The Prio protocol proceeds in four main steps:

1. Upload phase: Each client i encodes its private input
xi ∈ D into a vector yi ∈ Fk using an affine-aggregatable
encoding (AFE) algorithm: yi← Encode(xi). The client
then splits yi in s shares, [yi]1, . . . , [yi]s, such that yi =
[yi]1 + . . . +[yi]s. This sharing ensures that each server
receives only a portion of the data, sufficient for com-
puting the aggregation function but insufficient to re-
construct the original information. To prove that the en-
coded input is well-formed (xi ∈ D), the client generates
a secret-shared non-interactive proof (SNIP). Finally the
client sends each server j the corresponding input share
[yi] j and share of the SNIP proof over an authenticated
and encrypted channel.

2. Validation phase: After receiving client submissions,
the servers jointly verify the SNIP confirming that each
encoded input corresponds to a valid xi ∈ D.

3. Aggregation phase: Each server j maintains an accumu-
lator A j ∈ Fk′ (initialized to zero) and for each verified
client submission, the server updates its accumulator by
adding a truncated version of the client share (only the
the first k′ elements carry the necessary information):
A j← A j +Trunck′([yi] j) ∈ Fk′ .
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4. Publish phase: Once all client shares have been pro-
cessed, the servers publish their accumulator values
A1,A2, . . . ,As. The final aggregate is computed by sum-
ming the accumulators σ = ∑

s
j=1 A j = ∑

n
i=1 Trunck′yi

and the final aggregate statistic is then recovered by ap-
plying the AFE decoding algorithm: Decode(σ) ∈ A.

Security protocol properties: Robustness against malicious
clients - guaranteed by the soundness of the SNIP construc-
tion; f -privacy - holds as the only information leaked is the
final aggregate value (as long as at least one server is hon-
est, the AFE is f -private and the SNIP is zero-knowledge);
Anonymity - holds if the function f is symmetric, i.e. if a per-
mutation (x′1, . . . ,x

′
n−m) of the inputs (x1, . . . ,xn−m) does not

affect the output, so if f (x1, . . . ,xn−m) = f (x′1, . . . ,x
′
n−m).

8 Evaluation

Protocol evaluation was done by comparing a protocol imple-
mentation (using SNIPs) with a private aggregation scheme
that uses non-interactive zero-knowledge proofs (NIZKs).

Client Performance: Encoding a data submission of 100
4-bit integers (of 87-bit finite field) takes ∼ 0.024 seconds on
a workstation (using a 2010 Intel Xeon E5620) and ∼ 0.112
seconds on a smartphone (using a 2012 Samsung S3). For a
265-bit field, the encoding times increase slightly: ∼ 0.036
seconds on a workstation and ∼ 0.17 on a smartphone.

Server Throughput (submission processed/s): For the Prio
protocol it is roughly one-fifth of a no-privacy scheme and
Prio outperforms NIZK-based schemes by 10×. Adding more
servers does not significantly affect throughput because the
workload for checking each client submission is efficiently
distributed. A server is selected as leader and coordinates
verification while the non-leader servers send only a constant
amount of data per submission, independent of the submission
size and of the complexity of the validity check.

Computational efficiency: Compared to schemes based on
public key cryptography, Prio outperforms them as it only
requires the client to perform a single public key cryptogra-
phy operation. For a validation circuit with M multiplication
gates, a NIZK based scheme requires the client to perform
2M exponentiations; in contrast Prio requires O(M · logM)
multiplications in F. Although SNARK-based protocols pro-
duce succinct proofs, their verification time grows with the
statement size: A client has to compute s ·L hashes (where s
is the number of servers and L is the submission length).

Using Prio protocol to privately train a d-dimensional least-
squares regression model on private client-submitted data (e.g.
a vector of 14-bit integers with health information) it leads to
a 50× slowdown at the client over a no-privacy scheme (due
to the computation of crafting SNIPs); the server incurs in
only a 1-2× slowdown compared to a no robust scheme and
a 5-15× slowdown over a no privacy scheme. In comparison
a NIZK-based scheme is around 100-200× worse than the no
privacy scheme.

9 Discussion

9.1 Limitations
The protocol suffer some limitations and attacks that can
lower the privacy target:

• Selective Denial-of-Service Attack: An attacker could
prevent all honest clients except one from contact-
ing the servers. In this case the protocol computes
f (xhonest ,xevil1 , . . . ,xevilm) and the adversary could infer
information about xhonest . A standard defense involves
servers keeping a list of registered client keys.

• Intersection Attack: An adversary observing the output
of f (x1, . . . ,xn), can block an honest client (e.g. the n-
th) in a subsequent run and retrieve: f (x′1, . . . ,x

′
n−1). If

the client inputs remain unchanged, then the adversary
can deduce information about xn. A standard defense
involves servers adding differential privacy noise to the
result before publishing it.

• Prio provides robustness if all servers are honest. Extend-
ing it to faulty servers is useful but it weakens the privacy
guarantees of the system: a system that protects robust-
ness in the presence of k faulty servers, can only protect
privacy against at most s− k−1 malicious servers.

9.2 Real-world deployments
Since its publication nearly 8 years ago, Prio has seen large-
scale deployments. During the COVID-19 pandemic, Apple
and Google introduced exposure notification systems to alert
users about potential contact with virus positive individu-
als. To monitor viral transmission patterns aggregated insight
were requested by public health agencies. To address this
need, Apple and Google implemented a privacy-preserving
data aggregation protocol similar to the one introduced by
Boneh and Corrigan-Gibbs with Prio. Mozilla uses Oblivious
HTTP and the Prio-based Distributed Aggregation Protocol
for collecting aggregate browser statistics.

10 Conclusion
Prio protocol provides the bases for a real-world system, based
on advanced cryptographic techniques, that combines the ben-
efits of privacy, robustness and performance and balances
their trade-offs; this protocol not only protects individual user
data, but also opens up new avenues for private large-scale
data analytics, which is now more than ever important.
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