src.core.utils module
- src.core.utils.build_model(theta: list[Tensor], model, input_dim: int) Module [source]
Build a model instance from the provided parameters.
- Parameters:
theta (list[torch.Tensor]) – List of model parameters.
model_cls (Callable[[int], nn.Module]) – Model class to be instantiated.
input_dim (int) – Input dimension of the model.
- Returns:
Model instance with the provided parameters.
- Return type:
nn.Module
- src.core.utils.evaluate_model(name: str, model: Module, X_eval: ndarray, y_eval: ndarray) float [source]
Evaluate the model on the provided evaluation dataset.
- Parameters:
model (nn.Module) – Model instance to be evaluated.
X_eval (np.ndarray) – Evaluation dataset features.
y_eval (np.ndarray) – Evaluation dataset labels.
- Returns:
Accuracy of the model on the evaluation dataset.
- Return type:
float
- Raises:
ValueError – If the model is not in evaluation mode.
- src.core.utils.parse_args()[source]
Parse command line arguments. User will have to choose the amount of overparametrization between 110%, 150% and 200%. :param overparam: Percentage of features vs samples. :return: Parsed arguments.
- src.core.utils.sgd_training(X_train, y_train, num_epochs=10000, criterion=MSELoss(), batch_size=10, lr=0.01, tol=1e-08)[source]